Собран первый в мире тепловыделяющий элемент для ядерного космического двигателя
Вот и настало то время, когда не только можно, но и нужно гордиться за нашу великую необъятную Родину!
К сожалению, в связи с событиями в Сирии и Египте, нашими военными,политическими и дипломатическими успехами, трагедией СУ-24М, осталась практически не освещенной новость о событии, которое по своим последствиям сравнимо с созданием ракетного двигателя.
На ОАО «Машиностроительный завод» в подмосковной Электростали собран первый в мире тепловыделяющий элемент (ТВЭЛ) штатной конструкции для создаваемой в России космической ядерной электродвигательной установки (ЯЭДУ).
Об этом сообщает пресс-служба Госкорпорации «Росатом». Главным конструктором реакторной установки является ОАО «НИКИЭТ».
Работы ведутся в рамках реализации проекта «Создание транспортно-энергетического модуля на основе ЯЭДУ мегаваттного класса». По словам директора и генерального конструктора ОАО «НИКИЭТ» Юрия Драгунова, согласно плану ЯЭДУ должна быть готова в 2018 году
«В части реакторной установки, в части объема работ Госкорпорации «Росатом» все идет по плану, в соответствии с дорожной картой», — сказал Драгунов.
Не имеющий аналогов в мире российский ЯЭДУ планируется использовать для дальних космических полетов и длительной работы на орбите. В частности, создание ядерного двигателя позволит резко сократить время полета на Марс и уменьшить в четыре раза массу стартового комплекса для марсианской экспедиции.
Проект ЯЭДУ утвердила в 2009 году Комиссия по модернизации и технологическому развитию экономики России при президенте России. Эскизное проектирование было завершено к 2012 году
Это скачок в будущее.
Мечта Сергея Королева, Вернера фон Брауна и их предшественников — получить мощную энергетику для космических полетов и длительной работы на орбите — в скором времени может осуществиться.
Этот двигатель позволит нам высадиться первыми на Марс, и вернуться назад.
Это скачок уже в 22 век, отрыв от всех остальных. Сегодня Россия пытается доминировать в космической отрасли , строятся новые космодромы и ракеты. Надеюсь, нам удастся вернуть величие некогда былой советской космонавтики»
По словам главы Роскосмоса Владимира Поповкина, опытный образец ядерной энергодвигательной установки мегаваттного класса, предназначенной для межпланетных миссий, появится в России в 2017 году. А уже через год в Сосновом Бору под Петербургом могут начаться стендовые испытания ядерного реактора для этих целей.
Напомним короткую предысторию вопроса (о более длинной — речь в конце). Два года назад, в июне 2010-го, вышло распоряжение президента России Дмитрия Медведева в поддержку проекта космического транспортно-энергетического модуля (ТЭМ) на основе ядерной энергетической установки мегаваттного класса.
Для реализации задуманного в период с 2010 по 2018 год было обещано 17 млрд рублей. Из этих средств 7,245 млрд рублей предназначались госкорпорации «Росатом» на создание самого реактора. Другие 3,955 млрд — ФГУП «Центр Келдыша» на создание ядерной — энергодвигательной установки. Еще 5,8 млрд рублей — для РКК «Энергия», где в те же сроки предстоит сформировать рабочий облик всего транспортно-энергетического модуля.
По заявлениям первых лиц «Росатома» и космической отрасли, проект развивается успешно. А как оценивают текущее положение дел его непосредственные участники? Тем более сейчас, когда только и разговоров — про неудачи и сбои, преследующие Роскосмос?
За ответом на этот вопрос корреспондент «РГ» отправился в «Центр Келдыша» и встретился с генеральным директором академиком РАН Анатолием Коротеевым.
В его лице функции формального и неформального лидера «проекта ТЭМ» органичным образом совпали: академик Коротеев является научным руководителем этого направления, и он же возглавляет межведомственную рабочую группу.
В одной упряжке.
Анатолий Сазонович, давайте для начала уточним, кто и за что конкретно отвечает в этом амбициозном проекте?
Анатолий Коротеев: Головная организация, отвечающая за разработку собственно ядерного реактора, — Научно-исследовательский и конструкторский институт энергетических технологий (НИКИЭТ), входящий в систему «Росатома». «Центр Келдыша», которым я руковожу, назначен головным по ядерной энергодвигательной установке. А за транспортный модуль отвечает Ракетно-космическая корпорация «Энергия».
Как я понимаю, это три «коренника». А кого еще привлекли или собираетесь привлечь?
Анатолий Коротеев: В основе — кооперация предприятий «Росатома», которые должны делать реактор, и Роскосмоса, где изготовят турбокомпрессоры, генераторы и сами двигатели. Надо иметь в виду, что мы ведь не в чистом поле начали этот проект. В нем использован задел, созданный в предыдущие годы.
Например, по реактору в кооперации в НИКИЭТ состоят и предлагают свои наработки Подольский научно-исследовательский технологический институт, Курчатовский центр, Обнинский физико-энергетический институт. По замкнутому контуру многое сделали «Центр Келдыша», КБ химического машиностроения и воронежское КБ химической автоматики. По генератору подключаем Институт электромеханики.
Вы возглавляете межведомственную рабочую группу. Как часто и для каких целей она собирается?
Анатолий Коротеев: Собираемся по мере необходимости, один-два раза в месяц, бывает и чаще. Возникающие друг к другу вопросы стараемся не накапливать.
В июле на рабочей группе обсуждали плюсы и минусы различных вариантов конструкции холодильников-излучателей для отвода тепла от реакторной установки в условиях невесомости и безвоздушного пространства. В августе совещание состоялось в Сосновом Бору под Петербургом, где решено проводить натурные испытания такого реактора.
По замкнутой схеме.
Не секрет, что работы по созданию ядерных ракетных двигателей были начаты в США и в СССР еще в 60-х годах прошлого века. Как далеко они продвинулись? И с какими проблемами пришлось столкнуться на этом пути?
Анатолий Коротеев: Действительно, работы по использованию ядерной энергии в космосе были начаты и активно велись у нас и в США в 1960-70-е годы.
Первоначально была поставлена задача создать ракетные двигатели, которые вместо химической энергии сгорания горючего и окислителя использовали бы нагрев водорода до температуры около 3000 градусов. Но оказалось, что такой прямой путь все-таки неэффективен. Мы на короткое время получаем большие тяги, но при этом выбрасываем струю, которая в случае нештатной работы реактора может оказаться радиоактивно зараженной.
Определенный опыт был накоплен, но ни нам, ни американцам не удалось тогда создать надежных двигателей. Они работали, но мало, потому что нагреть водород до 3000 градусов в ядерном реакторе — серьезная задача. А кроме того, возникали проблемы экологического свойства во время наземных испытаний таких двигателей, поскольку радиоактивные струи выбрасывались в атмосферу. Уже не секрет, что подобные работы проводились на специально подготовленном для ядерных испытаний Семипалатинском полигоне, который остался в Казахстане.
В силу некоторых причин работы у нас и в США были прекращены или приостановлены — оценивать можно по-разному. И возобновить их таким, я бы сказал, лобовым образом, чтобы сделать ядерный двигатель со всеми уже названными недостатками, нам показалось неразумным. Мы предложили совершенно иной подход. От старого он отличается тем же, чем отличается гибридный автомобиль от обычного. В обычном авто двигатель крутит колеса, а в гибридных — от двигателя вырабатывается электроэнергия, и уже это электричество крутит колеса. То есть создается некая промежуточная электростанция.
Вот и мы предложили схему, в которой космический реактор не нагревает струю, выбрасываемую из него, а вырабатывает электричество. Горячий газ от реактора крутит турбину, турбина крутит электрогенератор и компрессор, который обеспечивает циркуляцию рабочего тела по замкнутому контуру. Генератор же вырабатывает электричество для плазменного двигателя с удельной тягой в 20 раз выше, чем у химических аналогов.
По существу, это мини-АЭС в космосе. И в чем ее преимущества перед прямоточным ядерным двигателем?
Анатолий Коротеев: Главное — выходящая из нового двигателя струя не будет радиоактивной, поскольку через реактор проходит совершенно другое рабочее тело, которое содержится в замкнутом контуре.
Кроме того, нам не надо при этой схеме нагревать до запредельных значений водород: в реакторе циркулирует инертное рабочее тело, которое нагревается до 1500 градусов. Мы серьезно упрощаем себе задачу. И в итоге поднимем удельную тягу не в два раза, а в 20 раз по сравнению с химическими двигателями.
Немаловажно и другое: отпадает потребность в сложных натурных испытаниях, для которых нужна инфраструктура бывшего Семипалатинского полигона, в частности, та стендовая база, что осталась в городе Курчатове.
В нашем случае все необходимые испытания можно провести на территории России, не втягиваясь в длинные международные переговоры об использовании ядерной энергии за пределами своего государства.
За место на орбите.
Чтобы проект осуществился в заявленный срок, требуются ли сейчас какие-то дополнительные меры организационного или финансового характера со стороны Роскосмоса и правительства РФ?
Анатолий Коротеев: На весь проект по 2018 год включительно обещано 17 млрд рублей. Декларированная сумма меньше чем хотелось бы, но, думаю, на ближайшие годы этого достаточно.
Ведутся ли сейчас подобные работы в других странах?
Анатолий Коротеев: У меня была встреча с заместителем руководителя НАСА, мы обсуждали вопросы, связанные с возвращением к работам по ядерной энергии в космосе, и он заявил, что американцы проявляют к этому большой интерес.
Вполне возможно, что и Китай может ответить активными действиями со своей стороны, поэтому работать надо быстро. И не только ради того, чтобы опередить кого-то на полшага.
Работать надо быстро в первую очередь для того, чтобы в формирующейся международной кооперации, а де-факто она формируется, мы выглядели достойно.
Я не исключаю, что уже в ближайшей перспективе может быть инициирована международная программа по ядерной космической энергоустановке наподобие реализуемой сейчас программы по управляемому термоядерному синтезу.
Спасибо за внимание.
Ссылка источника: http://rusila.su/2014/08/22/yadernyj-dvigatel-dlya-kosmolyota/